Abstract
Radio frequency interference is a major issue for synthetic aperture radar (SAR) imaging. Especially with the presence of wideband interference (WBI), the signal-to-interference ratio (SIR) of the measurements is greatly degraded, thus making it difficult to produce a high-quality SAR image. Compared with narrow-band interference (NBI), WBI occupies a larger bandwidth and is more complicated to deal with. This paper addresses the detection and mitigation of WBI in high-resolution airborne SAR data. First, a WBI-corrupted echo is characterized in the time–frequency representation by utilizing the short-time Fourier transform. In this way, the original range-spectrum WBI mitigation problem can be simplified into a series of instantaneous-spectrum NBI mitigation problems. For each instantaneous spectrum, the existence of interference signal can be identified according to the negentropy-based statistical test. Furthermore, the interference signal is mitigated by notch filtering or eigensubspace filtering. The experimental results of the simulated data, as well as real measured data sets, show that the proposed scheme is effective in suppressing the interference signal and in obtaining a high-quality image.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.