Abstract

Optical manipulation of quantum systems requires stable laser sources able to produce complex waveforms over a large frequency range. In the visible region, such waveforms can be generated using an acousto-optic modulator driven by an arbitrary waveform generator, but these suffer from a limited tuning range typically of a few tens of MHz. Visible-range electro-optic modulators are an alternative option offering a larger modulation bandwidth, however they have limited output power which drastically restricts the scalability of quantum applications. There is currently no architecture able to perform phase-stabilized waveforms over several GHz in the visible or near infrared region while providing sufficient optical power for quantum applications. Here we propose and develop a modulation and frequency conversion set-up able to deliver optical waveforms over a large frequency range, with a high spurious extinction ratio, scalable to the entire visible/near infrared region with high optical power. The optical waveforms are first generated at telecom wavelength and then converted to the emitter wavelength through a sum frequency generation process. By adapting the pump laser frequency, the optical waveforms can be tuned to interact with a broad range of optical quantum emitters or qubits such as alkali atoms, trapped ions, rare earth ions, or fluorescent defects in solid-state matrices. Using this architecture, we were able to detect and study a single erbium ion in a nanoparticle. We also generated high bandwidth signals at 606 nm, which would enable frequency multiplexing of on-demand read-out Pr3+:Y2SiO5 quantum memories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.