Abstract

In this paper, a wideband transmission unit cell is proposed for programmable metasurfaces operating in the Ka-band. The unit cell features a compact period of only 2.91 mm, corresponding to 0.34 λ0 at the center frequency of 35 GHz. A receiving layer, consisting of a patch loaded with two PIN diodes, is utilized to achieve 1-bit phase modulation, while a U-shaped patch serves as the transmitting layer to enable selection of linear polarization hold or conversion. Based on the multi-resonance principle, the proposed unit cell exhibits broadband behavior, as demonstrated by simulation results under periodic boundary conditions, which indicate a 3 dB transmission bandwidth of 29.4–40 GHz (30.5%). Two unit cells were fabricated and tested in a standard waveguide, with the minimum insertion loss of the two states tested being 1.2 dB and 3 dB bandwidths of 30.1–31.2 GHz and 33.5–38.5 GHz, respectively. The maximum 180° phase error is 10°, indicating the high quality of the proposed unit cell.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call