Abstract

A combination of near infra-red (NIR) photon harvesting and cobalt electrolytes having deeper redox energy level are needed for the fabrication of high efficiency dye-sensitized solar cells (DSSCs). A logical molecular design of unsymmetrical squaraine dye (SQ-110) as a representative of NIR dyes has been demonstrated to function well in DSSC using cobalt complex redox electrolyte. Problem of mass transport limitations due to the bulky cobalt complex ions leading to relatively enhanced charge recombination was amicably solved by single as well as multiple compact metal oxide surface passivation on both of the transparent conducting oxide substrate as well as mesoporous TiO2. Complete absence of light absorption beyond 550 nm wavelength region by D-35 and utilization of a complementary light harvesting dye SQ-110 led to efficient wide wavelength photon harvesting. DSSC fabricated using a dye cocktail of D-35 and SQ-110 in 4:1 ratio resulted in to photoconversion efficiency (PCE) of 7.2%, which is much higher as compared to the constituent individual sensitizers D-35 (3.6%) and SQ-110 (1.9%). This synergistic enhancement in PCE by dye cocktail was associated with the mutual co-operation of respective dyes in terms controlling the dye aggregation and complementary photon harvesting. In this dye cocktail system, D-35 is involved in the prevention of dye aggregation, lower wavelength photon harvesting and energy transfer induced photocurrent enhancement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call