Abstract

As consumer electronics and industrial control systems continue to evolve, the operating temperature range of capacitors is gradually increasing. Barium titanate-based ceramic capacitors are widely used in the field of high dielectrics, so temperature-stable barium titanate-based dielectric materials have been a hot research topic in the field of dielectric ceramics. The construction of a core–shell structure by unequal doping is an effective way to obtain temperature-stable dielectric materials. At the same time, this structure retains part of the highly dielectric tetragonal phase, and materials with overall high dielectric constants can be obtained. In this work, we prepared BaTiO3-xNaNbO3-0.002Gd2O3 (x = 1.0–6.0 mol%) as well as BaTiO3-0.05NaNbO3-yGd2O3 (y = 0–0.30 mol%) dielectric ceramics. On the basis of high-electronic-bandgap NaNbO3-modified BaTiO3 dielectric ceramics, a core–shell structure with a larger proportion of core phase was obtained by further doping the amphiphilic rare-earth oxide Gd2O3. By designing this core–shell structure, the temperature stability range of capacitors can be expanded. At a doping level of 5.0 mol% NaNbO3 and 0.20 mol% Gd2O3, the room temperature dielectric constant εr = 4266 and dielectric loss tan δ = 0.95% conforms to the X8R standard (from −55 °C to 150 °C, TCC < ±15%); volume resistivity ρv = 10,200 GΩ·cm and breakdown strength Eb = 13.5 kV/mm is attained in BaTiO3-based ceramics. The system has excellent dielectric and insulating properties; it provides a new solution for temperature-stable dielectric ceramics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call