Abstract
Efficient, safe, and reliable energy output from high-energy-density lithium metal batteries (LMBs) at all climates is crucial for portable electronic devices operating in complex environments. The performance of corresponding cathodes and lithium (Li) metal anodes, however, faces significant challenges under such demanding conditions. Herein, a nonflammable electrolyte for high-voltage Li||LCO cells has been designed, including partially-fluorinated ethyl 4,4,4-trifluorobutyrate (ETFB) as the key solvent, guided by theoretical calculations. With this ETFB-based electrolyte, Li||LCO cells exhibit enhanced reversible capacities and superior capacity retention at an elevated charge voltage of 4.5 V and a wide operating temperature range spanning from −60 °C to 70 °C. The cells achieve 67.1% discharge capacity at −60 °C, relative to room temperature capacity, and 85.9% 100th-cycle retention at 70 °C. The outstanding properties are attributed to the LiF-rich interphases formed in the ETFB-based electrolyte with a fine-tuned solvation structure, in which the coordination environment in the vicinity of Li+ cations and the distance between anion and solvents are subtly adjusted by introducing ETFB. This solvation structure has been mutually elucidated through joint spectra characterizations and atomistic simulations. This work presents a new strategy for the design of electrolytes to achieve all-climate reliable and safe application of LMBs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.