Abstract

The increasing demand of electronic devices for physical motion detection has encouraged the development of highly elastic strain sensors. Especially, to capture wide-range physical movements, supremely stretchable and wide-range strain sensors are required. Here, a novel transparent, bendable, stretchable, and wide-range strain sensor based on a sandwich-like stacked graphene and Ag-nanowires hybrid structures is reported. The hybrid structures on 200% pre-stretched polyacrylate (PAC) are patterned which possess good bendability up to 2 mm radius, impressive stretchability up to 200% and comparatively low sheet resistance ≈200 Ω sq-1 with transparency 85%. Pre-stretched PAC technique enables the sensor to work well at extremely high strains and to sense the multidirectional strains efficiently. The Ag-nanowires pattern on PAC is fabricated via the bubble-template method, by which a uniform distribution of Ag-nanowires is achieved with significant connectivity throughout the surface. This not only decreases the power consumption but also enhances the sensitivity of the strain sensor. The demonstrated strain sensor is capable to sense strains between 5% and 200%, and the response time for this sensation is <1 ms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.