Abstract

Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to both the emergence of life and to the metabolic engineering challenge of incorporating CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their closest relatives by enrichment analysis, ancestral character estimation, and random forest machine learning, to explore genetic adaptations associated with acquisition of the Calvin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis, and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase, and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epimerase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbohydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photorespiration did not appear to be adapted specifically for the Calvin cycle in the non-cyanobacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-positive organisms was commonly enabled by hydrogenase, and less commonly ammonia monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illustrated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase, which suggests a downregulation of the metabolite arabinose-5-phosphate, which may interfere with the Calvin cycle through enzyme inhibition and substrate competition. Certain domains of unknown function that were found to be important in the analysis may indicate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene ranking provides targets for experiments seeking to improve CO2 fixation, or engineer novel CO2-fixing organisms.

Highlights

  • Organisms that produce biomass by fixation of CO2 are classified as autotrophic

  • Our approach was to search for the unique Calvin cycle genes ribulose bisphosphate carboxylase/oxygenase (Rubisco) and Prk in the 24,706 bacterial and archaeal genomes of the Genome Taxonomy Database (GTDB; https://gtdb. ecogenomic.org/)

  • Phylogenetic analysis showed that all Rubisco forms (I-III) were detected and that Rubisco-like proteins, which do not catalyze CO2 fixation, were excluded (S1 Fig)

Read more

Summary

Introduction

Organisms that produce biomass by fixation of CO2 are classified as autotrophic. As atmospheric CO2 levels rise, autotrophs offer attractive ecological and biotechnological routes to climate change mitigation and sustainable biomanufacturing. Emphasizing the central role of autotrophic metabolism in evolution and life, the last universal common ancestor possessed the Wood-Ljungdahl pathway for CO2 fixation [1], possibly in combination with the reductive tri-carboxylic acid (TCA) cycle and the reductive glycine pathway [2]. These three ancient CO2 fixation pathways were later accompanied by the dicarboxylate/4-hydroxybutyrate cycle [3], the 3-hydroxypropionate/4-hydroxybutyrate cycle [4], the 3-hydroxypropionate bicycle [5,6], and the Calvin-Benson-Bassham (CBB) cycle [7]. Form I (Cyanobacteria, Proteobacteria, other Bacteria, algae, and plants), form II (Proteobacteria, Archaea, and dinoflagellates), and form III (Archaea) Rubiscos fix CO2, while form IV “Rubisco-like” proteins (RLPs) retain the earlier methionine salvage role

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.