Abstract
Capacitive pressure sensor (CPS) is widely used in the field of industrial equipment, because of the merits of fast dynamic response and high resolution. However, the traditional laminated CPS makes it difficult to achieve a wide detection limit in a small size, and this structure is susceptible to electromagnetic interference. Here we developed a miniature planar capacitive pressure sensor (MPCPS) with high performance, which can realize the response to external touching stimuli through the deformation of the packaging material and the change of the equivalent resistance. A metal shielding layer was added under the insulating substrate to effectively isolate the external interference. The thickness of the sensor is about 200 μm, and the diameter of the core sensing area is less than 1 mm. Two types of electrodes with different shapes were designed, among which the spiral electrode MPCPS (S-MPCPS) has better performance than the linear electrode MPCPS. The S-MPCPS has a sensitivity of 99.2% MPa−1 in the low-pressure range (0–0.1 MPa), fast response (20 ms), wide detection limit (>1 MPa), and high durability (>2000 cycles). In addition, MPCPS is proven to have good resistance to high temperature and oil contamination. Finally, practical applications such as contact pressure measuring on the meshing surface of spur gears and mechanical gripper clamping force monitoring were successfully demonstrated. These results shed light on the potential application of the MPCPS in the pressure detection of industrial equipment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.