Abstract

The mechanism of the emergence of robust quantum criticality in the heavy- electron quasicrystal YR15Al34Au51 is analyzed theoretically. By constructing a minimal model for the quasicrystal and its crystalline approximant, which contain concentric shell structures with Yb and Al-Au clusters, we show that a set of quantum critical points of the first-order valence transition of Yb appears as spots in the ground-state phase diagram. Their critical regions overlap each other, giving rise to a wide quantum critical region. This well explains the robust criticality observed in YR15Al34Au51 under pressure, and predicts the emergence of the common criticality in the crystalline approximant under pressure. The wider critical region in the quasicrystal than that in the crystalline approximant in the T-P phase diagram and the field-induced valence-crossover "region" in the T-H phase diagram are predicted to appear.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.