Abstract

AbstractWe analyze 65–105 keV electrons in the 7 February 2010 solar electron event observed simultaneously by STEREO‐A, STEREO‐B, and ACE. A method to reconstruct the full‐electron pitch angle distributions from the four Solar Electron and Proton Telescope sensors on STEREO‐A/B and the Solar Electron and Proton Telescope instrument on ACE in the energy range of approximately 60–300 keV for periods of incomplete angular coverage is presented. A transport modeling based on numerical solutions of a three‐dimensional particle propagation model which includes pitch angle scattering and focused transport is applied to the intensity and anisotropy profiles measured on all three spacecraft. Based on an analysis of intensity gradients observed between the three spacecraft, we find that the lateral transport of the electrons occurs partially close to the Sun, due to effects of nonradial divergence of magnetic field lines or particle diffusion, and partially in the interplanetary medium. For the mean free paths characterizing the electron diffusion parallel and perpendicular to the interplanetary magnetic field, we derive values of λ∥∼ 0.1 AU and λ⟂∼ 0.01 AU. In comparison with results from other particle events which we had previously analyzed in a similar manner we discuss whether the diffusion mean free paths parallel and perpendicular to the average magnetic field might be related with each other, and whether the particle transport perpendicular to the average magnetic field is more likely due to particles following meandering magnetic field lines, or due to particles being scattered off individual field lines.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call