Abstract

Rice is one of the three most important food crops in the world. Increasing rice yield is an effective way to ensure food security. Grain size is a key factor affecting rice yield; however, the genetic and molecular mechanisms regulating grain size have not been fully investigated. In this study, we identified a rice mutant, wide grain 4-D (wg4-D), that exhibited a significant increase in grain width and a decrease in grain length. Histological analysis demonstrated that WG4 affects cell expansion thereby regulating grain size. MutMap-based gene mapping and complementary transgenic experiments revealed that WG4 encodes an alpha-tubulin, OsTubA1. A SNP mutation in WG4 affected the arrangement of cortical microtubules and caused a wide-grain phenotype. WG4 is located in nuclei and cytoplasm and expressed in various tissues. Our results provide insights into the function of tubulin in rice and identifies novel targets the regulation of grain size in crop breeding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.