Abstract

Gas turbine blades and vanes in modern gas turbines are subjected to an extremely hostile environment. As such, sophisticated airfoil designs and advanced materials have been developed to meet stringent demands and at the same time, ensure increased performance. Despite the evolution of long-life airfoils, damage still occurs during service thus limiting the useful life of these components. Effective repair of after-service components provides life-cycle cost reduction of engines, and as well, contributes to the preservation of rare elements heavily used in modern superalloys. Among these methods developed in the last four decades for the refurbishment and joining of superalloy components, wide gap brazing (WGB) technology has been increasingly used in the field owing to its ability to repair difficult to weld alloys, to build up substantially damaged areas in one operation, and to provide unlimited compositional choices to enhance the properties of the repaired region. In this paper, the historical development of wide gap repair technology currently used in industry is reviewed. The microstructures and mechanical properties of different WGB joints are compared and discussed. Subsequently, different WGB processes employed at major OEMs are summarized. To conclude this review, future developments in WGB repair of newer generations of superalloys are explored.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.