Abstract
Surveillance and tracking of targets such as sensor fused warheads (SFWs) and unmanned aerial vehicles (UAVs) has been a challenging task, especially in the presence of multiple targets moving at a relatively fast speed. Due to the insufficient wavelength resolution, conventional radar technology may fail to resolve closely located targets or lack spatial resolution for specific target identification. There is a need for the development of an innovative sensor that is able to recognize and track closely related targets. To address this need, we have developed a target sensor that combines vision and laser ranging technologies for the detection and tracking of multiple targets with wide viewing angle and high spatial resolution. Using this sensor, regions-of-interest (ROIs) in the global scene are first selected, and then each ROI is subsequently zoomed with vision technique to provide high spatial resolution for target recognition or identification. Moreover, vision technique provides the azimuth and elevation angles of targets to a laser range finder for target distance determination. As a result, continuous three-dimensional target tracking can be potentially achieved with the proposed sensor. The developed sensor can be suitable for a wide variety of military and defense related applications. The design and construction of a proof-of-concept target tracking sensor is described. Basic performance of the constructed target tracking sensor including field-of-view, resolution, and target distance are presented. The potential military and defense related applications of this technology are highlighted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.