Abstract

Stochastic optical fluctuation imaging (SOFI) generates super-resolution fluorescence images by emphasizing the positions of fluorescent emitters via statistical analysis of their on-and-off blinking dynamics. In SOFI with speckle illumination (S-SOFI), the diffraction-limited grain size of the far-field speckles prevents independent blinking of closely located emitters, becoming a hurdle to realize the full super-resolution granted by SOFI processing. Here, we present a surface-sensitive super-resolution technique exploiting dynamic near-field speckle illumination to bring forth the full super-resolving power of SOFI without blinking fluorophores. With our near-field S-SOFI technique, up to 2.8- and 2.3-fold enhancements in lateral spatial resolution are demonstrated with computational and experimental fluorescent test targets labeled with conventional fluorophores, respectively. Fluorescent beads separated by 175 nm are also super-resolved by near-field speckles of 150 nm grain size, promising sub-100 nm resolution with speckle patterns of much smaller grain size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.