Abstract

We report herein the fabrication and performance response of a three-dimensional (3-D) intraoral scan probe based on optical coherence tomography (OCT) that enables 3-D structural and functional diagnoses of the human teeth. The OCT system was configured using a swept-source OCT (SS-OCT) with a center wavelength of 1310nm. The scan probe was built using an MEMS mirror and an optical collimator. The implemented SS-OCT equipped with the MEMS-based scan probe yielded an axial resolution of 10 μm and a scan range of 8 × 8 mm2. Two-dimensional (2-D) cross-sectional images of the teeth were acquired by the scan probe based on the OCT. The 3-D volume image was acquired by combining a series of 2-D images, which includes internal and structural information of the human teeth. To utilize the OCT system as an intraoral scanner, partially overlapped 3-D volume images were sequentially acquired and stitched. The 3-D stitching was implemented based on an iterative closest point algorithm. The feasibility of the intraoral scan probe is demonstrated based on its ability to image and characterize the structure and function of the human teeth.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.