Abstract

Fly lobula plate tangential cells are known to perform wide-field motion integration. It is assumed that the shape of these neurons, and in particular the shape of the subclass of VS cells, is responsible for this type of computation. We employed an inverse approach to investigate the morphology-function relationship underlying wide-field motion integration in VS cells. In the inverse approach detailed, model neurons are optimized to perform a predefined computation: here, wide-field motion integration. We embedded the model neurons to be optimized in a biologically plausible model of fly motion detection to provide realistic inputs, and subsequently optimized model neuron with and without active conductances (gNa, gK, gK(Na)) along their dendrites to perform this computation. We found that both passive and active optimized model neurons perform well as wide-field motion integrators. In addition, all optimized morphologies share the same blueprint as real VS cells. In addition, we also found a recurring blueprint for the distribution of gK and gNa in the active models. Moreover, we demonstrate how this morphology and distribution of conductances contribute to wide-field motion integration. As such, by using the inverse approach we can predict the still unknown distribution of gK and gNa and their role in motion integration in VS cells.

Highlights

  • Neurons in different animals and brain regions feature a wealth of different dendritic morphologies and distributions of ionic conductances [1,2]

  • We found that our optimized model neurons share crucial morphological features with real VS cell morphologies and that the intrinsic dynamics show remarkable similarity to the real cells

  • To investigate this neuronal morphology-function relationship we employ an inverse approach in which detailed model neurons are optimized to perform a predefined computation

Read more

Summary

Introduction

Neurons in different animals and brain regions feature a wealth of different dendritic morphologies and distributions of ionic conductances [1,2]. Computational function is defined here as input-output transformation, resulting from the physiology and subserving the biological purpose of that neuron Notable exceptions to this incomplete understanding are neurons close the sensory input for which the electrophysiological dynamics are recorded during sensory stimulation, the morphology is known and both can be correlated to the neuron’s sensory coding. One such example are the fly lobula plate tangential cells (LPTCs), which responds to visual motion in preferred directions, and which are demonstrated to be wide-field motion detectors [3,4]. The aim of this study is to identify the morphological building blocks required to perform wide-field motion integration, and to investigate how physiological processes interact with the morphology to perform wide-field motion integration

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.