Abstract

Photoacoustic microscopy (PAM) provides a new method for the imaging of small-animals with high-contrast and deep-penetration. However, the established PAM systems have suffered from a limited field-of-view or imaging speed, which are difficult to both monitor wide-field activity of organ and record real-time change of local tissue. Here, we reported a dual-raster-scanned photoacoustic microscope (DRS-PAM) that integrates a two-dimensional motorized translation stage for large field-of-view imaging and a two-axis fast galvanometer scanner for real-time imaging. The DRS-PAM provides a flexible transition from wide-field monitoring the vasculature of organs to real-time imaging of local dynamics. To test the performance of DRS-PAM, clear characterization of angiogenesis and functional detail was illustrated, hemodynamic activities of vasculature in cerebral cortex of a mouse were investigated. Furthermore, response of tumor to treatment were successfully monitored during treatment. The experimental results demonstrate the DRS-PAM holds the great potential for biomedical research of basic biology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call