Abstract
A novel wide coplanar waveguide- (CPW-) fed multiband wearable monopole antenna is presented. The multiband operation is achieved by generating slanted monopoles of different lengths from an isosceles triangular patch. The different operating frequencies of the proposed antenna are associated with the lengths of the slanted monopoles, which are determined under quarter wavelength resonance condition. The CPW line is used as a multiband impedance-matching structure. The two grounds are slightly extended for better impedance matching. The proposed antenna is designed to cover the 1800 MHz GSM, 2.4 GHz/5.2 GHz WLAN, and 3.5 GHz WiMAX bands. The measured peak gains and impedance bandwidths are about 4.18/3.83/2.6/2.94 dBi and 410/260/170/520 MHz for the 1550-1960 MHz/2.3-2.56 GHz/3.4-3.57 GHz/5.0-5.52 GHz bands, respectively. The calculated averaged specific absorption rate (SAR) values at all the resonant frequencies are well below the standard limit of 2 W/kg, which ensures its feasibility for wearable applications. The antenna performance under different bending configurations is investigated and the results are presented. The reflection coefficient characteristics of the proposed antenna is also measured for different on-arm conditions and the results are compared. A good agreement between experimental and simulation results validates the proposed design approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.