Abstract

The combination of wide bandwidth W-band inverse synthetic aperture radar imagery and high-fidelity numerical simulations has been used to identify distinguishing signatures from simple metallic and dielectric targets. Targets are located with millimeter-scale accuracy using super-resolution techniques. Radon transform reconstructions of the returns from rotated targets approached the image quality of the complete data set in a fraction of the time by sampling as few as 10 angles. The limitations of shooting-and-bouncing ray simulations at high frequencies are illustrated through a critical comparison of their predictions with the measured data and the method of moments simulations, indicating the importance of accurately capturing the obfuscating role played by multipath interference in complex targets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.