Abstract

An instrumentation amplifier (IA) with continuous tuning of the voltage gain, suitable for operation over a wide frequency range, and aimed to electrical bioimpedance spectroscopy, is proposed. The operation principle of the IA is based on indirect current feedback (ICF), which leads to an almost-constant bandwidth regardless of the value of the programmed voltage gain. The use of improved voltage followers in the transconductors required in the ICF technique allows achieving a compact implementation with a bandwidth compatible with bioimpedance spectroscopy applications. The tuning strategy relies on a continuously programmable current mirror that can be electronically adjusted by means of a control current. The IA has been designed and fabricated in 180 nm CMOS technology to operate with a 1.8-V single supply. The experimental characterization of the silicon prototypes showed a gain programmability range higher than 45 dB, between –4.6 dB and 41.2 dB, a BW around 3 MHz, and a maximum CMRR at DC higher than 86 dB, all this with a minimum current consumption of 144.8 μA and an area occupation of 0.0196 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> .

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.