Abstract

Fabricating complex transition metal oxides with a tunable bandgap without compromising their intriguing physical properties is a longstanding challenge. Here we examine the layered ferroelectric bismuth titanate and demonstrate that, by site-specific substitution with the Mott insulator lanthanum cobaltite, its bandgap can be narrowed by as much as 1 eV, while remaining strongly ferroelectric. We find that when a specific site in the host material is preferentially substituted, a split-off state responsible for the bandgap reduction is created just below the conduction band of bismuth titanate. This provides a route for controlling the bandgap in complex oxides for use in emerging oxide optoelectronic and energy applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call