Abstract

Dopant-free polymer hole transport materials (HTMs) exhibit high thermal stability, hydrophobicity and film-processing capabilities, demonstrating excellent device efficiency and stability in perovskite solar cells (PSCs). Continued innovation of wide-bandgap polymers in organic photovoltaics (OPV) provides a valuable toolbox for developing polymeric HTMs. Here, we propose an effective molecule design for selecting structurally relevant polymers (D18, D18-Cl, PBQx-TCl) available for commercialization. We discover that the highly planar conjugated backbones play a crucial role in regulating the packing orientation of the film relative to the perovskite. The moderate aggregation with face-on packing orientation is conducive to the high-quality film, which is responsible for better contact with perovskite and superior charge extraction and transport. Simultaneously, these polymers with robust passivation enhanced the open circuit voltage (VOC) without additional passivation layers, streamlining the device process. Consequently, a PSC using dopant-free PBQx-TCl HTL demonstrated an efficiency of 24.12 % with a high VOC of 1.20 V and good operational stability (T90 > 600 h). This work reveals transparent structure–function-performance relationships between molecules and devices, paving the way for the subsequent development of high-performance HTMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.