Abstract

Understanding the evolution of Universe is, in the forefront of, the modern day observational cosmology. It requires precise and accurate measurement of cosmological signal, orders of magnitude weaker than the bright sky background. Detection of such a signal having distinct spectral signature, needs an antenna with frequency independent characteristics over more than an octave bandwidth. A spherical monopole antenna has been designed to operate in the frequency range 50-200 MHz with a spectral smoothness of about few parts in 104. The structure has been modeled and optimized using WIPL-D, to minimize spectral features arising out of abrupt reflections of surface currents and frequency dependent radiation patterns. A prototype has been built to validate the design. This paper presents the methodology adopted in the overall antenna design, experiences in its prototyping and simulation and the measurement results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call