Abstract

Modern power grid is a generation mix of conventional generation facilities and variable renewable energy resources (VRES). The complexity of such a power grid with generation mix has routed the utilization of infrastructures involving phasor measurement units (PMUs). This is to have access to real-time grid information. However, the traffic of digital information and communication is potentially vulnerable to data-injection and cyber attacks. To address this issue, a median regression function (MRF)-based state estimation is presented in this paper. The algorithm was stationed at each monitoring node using interacting multiple model (IMM)-based fusion architecture. An exogenous variable-driven representation of the state is considered for the system. A mapping function-based initial regression analysis is made to depict the margins of state estimate in the presence of data-injection. A median regression function is built on top of it while generating and evaluating the residuals. The tests were conducted on a revisited New England 39-Bus system with large scale photovoltaic (PV) power plant. The system was affected with multiple system disturbances and severe data-injection attacks. The results show the effectiveness of the proposed MRF method against the mainstream and regression methods. The proposed scheme can accurately estimate the states and evaluate the contaminated measurements while improving the situation awareness of wide area monitoring systems (WAMS) operations in modern power grids

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.