Abstract

This paper proposes a robust and computationally efficient wide-area backup protection (WABP) scheme against asymmetrical faults on transmission systems using available synchronized/unsynchronized phasor measurements. Based on the substitution theorem, the proposed scheme replaces the faulted line with two suitable current sources. This results in a linear system of equations for WABP, with no need of full system observability by measurement devices. The identification of the faulted line is attributed to the sum of squared residuals ( <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">SoSR</i> ) of the developed system of equations. To preserve accuracy, the scheme limits the calculations to the assessment of the negative-sequence circuit of the gird. Relevant practical aspects that have not been properly addressed in the literature, namely the non-simultaneous opening of circuit breakers (CBs) and their single-pole tripping for single-phase to ground faults are investigated. The linearity of the formulations derived removes concerns over convergence speed and potential time-synchronization challenges. The proposed scheme is able to identify the faulted line and retain this capability for hundreds of milliseconds following the fault inception. More than 20 000 simulations conducted on the IEEE 39-bus test system verify the effectiveness of the proposed WABP scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.