Abstract

High-quality wide-angle holographic content is at the heart of the success of near-eye display technology. This work proposes the first digital holographic (DH) system enabling recording wide-angle scenes assembled from objects larger than the setup field of view (FOV), which can be directly replayed without 3D deformation in the near-eye display. The hologram formation in the DH system comprises free space propagation and Fourier transform (FT), which are connected by a rectangular aperture. First, the object wave propagates in free space to the rectangular aperture. Then, the band-limited wavefield is propagated through the single lens toward the camera plane. The rectangular aperture can take two sizes, depending on which DH operates in off-axis or phase-shifting recording mode. An integral part of the DH solution is a numerical reconstruction algorithm consisting of two elements: fringe processing for object wave recovery and wide-angle propagation to the object plane. The second element simulates propagation through both parts of the experimental system. The free space part is a space-limited angular spectrum compact space algorithm, while for propagation through the lens, the piecewise FT algorithm with Petzval curvature compensation is proposed. In the experimental part of the paper, we present the wide-angle DH system with FOV 25°×19°, which allows high-quality recording and reconstruction of large complex scenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call