Abstract
We analyze a certain class of von Neumann algebras generated by selfadjoint elements \(\), for \(\) satisfying the general commutation relations: $$$$ Such algebras can be continuously embedded into some closure of the set of finite linear combinations of vectors \(\), where \(\) is an orthonormal basis of a Hilbert space \(\). The operator which represents the vector \(\) is denoted by \(\) and called the “Wick product” of the operators \(\). We describe explicitly the form of this product. Also, we estimate the operator norm of \(\) for \(\). Finally we apply these two results and prove that under the assumption \(\) all the von Neumann algebras considered are II 1 factors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.