Abstract
The resolution of optical imaging is limited by diffraction as well as detector noise. However, thermal imaging exhibits an additional unique phenomenon of ghosting which results in blurry and low-texture images. Here, we provide a detailed view of thermal physics-driven texture and explain why it vanishes in thermal images capturing heat radiation. We show that spectral resolution in thermal imagery can help recover this texture, and we provide algorithms to recover texture close to the ground truth. We develop a simulator for complex 3D scenes and discuss the interplay of geometric textures and non-uniform temperatures which is common in real-world thermal imaging. We demonstrate the failure of traditional thermal imaging to recover ground truth in multiple scenarios while our thermal perception approach successfully recovers geometric textures. Finally, we put forth an experimentally feasible infrared Bayer-filter approach to achieve thermal perception in pitch darkness as vivid as optical imagery in broad daylight.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.