Abstract

AbstractRadio wave transmissions from satellites revealed that Mars had two relatively distinct layers of ionization: a maximum electron density near 130 km, and a secondary layer near 110 km. When the Viking descent probes—with their in situ observing capabilities—passed through the ionosphere, the peak electron density was found, with no indication of a secondary layer below. Here we use an ionospheric model to show that profiles of electron density versus height have shapes that favor the detection of two layers at local times near dawn and dusk (where many thousands of radio occultation observations have been made), but that the two layers essentially merge into one during midday hours (when Viking measurements were made). The profile shapes are attributed to ionizing geometry of solar photons and to chemical processes that affect the profile shapes in a way that favors secondary peak formation near sunrise and sunset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.