Abstract

The larch bud-moth cycle has been observed in the sub-alpine larch-cembran pine forests 16 times since 1850. Infestation is easily recognized by the characteristic red-brown discoloration of the larch crowns due to the wasteful feeding of the bud moth larvae. The heaviest defoliation recurs at intervals of 8.47±0.27 (SE) years, and the larval density per kilogram of larch branches varies more than 10000-fold over four or five generations. The basic regulatory mechanism for this cycle is the induced change in food quality for the two or more subsequent larval generations. Defoliation functions as a negative feedback mechanism acting on larval density. In 1989 local discoloration in the Upper Engadine valley was observed in the usual first focus. In 1990 and 1991, however, instead of the expected widespread defoliation damage, larval densities decreased drastically. Based on extensive field data collected from 1961 to 1991 on the development and the survival of the bud moth (Zeiraphera diniana Gn.) and the phenology of the host, Larix decidua L., this paper shows the effect of weather on survival in the egg stage and on the coincidence of larval hatching with the sprouting of the larch. It is shown that the winter and spring weather conditions in 1989-1991 were conducive to unusually high egg mortality. Since these conditions occurred in three successive generations, population growth was effectively reduced and the cycle collapsed prematurely. Thus the rather persistent cyclicity of the larch-larch bud-moth system was disturbed by weather conditions with a very low probability of occurrence, but due to the inherent high resilience of the system, the next population peak with visible defoliation is expected to occur 1996/1997, provided that the weather conditions return to the climatic standard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call