Abstract

The common practice of power infrastructure oversubscription in data centers exposes dangerous vulnerabilities to well-timed power attacks (i.e., maliciously timed power loads), possibly creating outages and resulting in multimillion-dollar losses. In this paper, we focus on the emerging threat of power attacks in a multi-tenant data center, where a malicious tenant (i.e., attacker) aims at compromising the data center availability by launching power attacks and overloading the power capacity. We discover a novel acoustic side channel resulting from servers' cooling fan noise, which can help the attacker time power attacks at the moments when benign tenants' power usage is high. Concretely, we exploit the acoustic side channel by: (1) employing a high-pass filter to filter out the air conditioner's noise; (2) applying non-negative matrix factorization with sparsity constraint to demix the received aggregate noise and detect periods of high power usage by benign tenants; and (3) designing a state machine to guide power attacks. We run experiments in a practical data center environment as well as simulation studies, and demonstrate that the acoustic side channel can assist the attacker with detecting more than 50% of all attack opportunities, representing state-of-the-art timing accuracy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call