Abstract

When mobile organisms are spatially disoriented, for instance by rapid repetitive movement, they must re-establish orientation. Past research has shown that the geometry of enclosing spaces is consistently used for reorientation by a wide variety of species, but that non-geometric features are not always used. Based on these findings, some investigators have postulated a species-universal 'geometric module' that is transcended by the acquisition of spatial language at 6 years. This conclusion has been challenged, however, by findings that children as young as 18 months actually do use features to reorient in larger enclosures than those used in the original experiments. The reason for the room size effect is explored here in five experiments. Collectively, the data on age at which features are first used point to the importance of both restriction of movement in the small space and the fact that features are closer in the small space. In addition, success is seen at younger ages when the target object is adjacent to the feature. These results favor an adaptive combination model of spatial reorientation over a 'module-plus-language' view.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.