Abstract
This is the first time that atmospheric concentrations of individual pollen types have been recorded by an automatic sampler with 1-hour and sub-hourly resolution (i.e. 1-minute and 1-second data). The data were collected by traditional Hirst type methods and state-of the art Rapid-E real-time bioaerosol detector. Airborne pollen data from 7 taxa, i.e. Acer negundo, Ambrosia, Broussonetia papyrifera, Cupressales (Taxaceae and Cupressaceae families), Platanus, Salix and Ulmus, were collected during the 2019 pollen season in Novi Sad, Serbia. Pollen data with daily, hourly and sub-hourly temporal resolution were analysed in terms of their temporal variability. The impact of turbulence kinetic energy (TKE) on pollen cloud homogeneity was investigated. Variations in Seasonal Pollen Integrals produced by Hirst and Rapid-E show that scaling factors are required to make data comparable. Daily average and hourly measurements recorded by the Rapid-E and Hirst were highly correlated and so examining Rapid-E measurements with sub-hourly resolution is assumed meaningful from the perspective of identification accuracy. Sub-hourly data provided an insight into the heterogenous nature of pollen in the air, with distinct peaks lasting ~5–10 min, and mostly single pollen grains recorded per second. Short term variations in 1-minute pollen concentrations could not be wholly explained by TKE. The new generation of automatic devices has the potential to increase our understanding of the distribution of bioaerosols in the air, provide insights into biological processes such as pollen release and dispersal mechanisms, and have the potential for us to conduct investigations into dose-response relationships and personal exposure to aeroallergens.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.