Abstract
The separation of single-walled carbon nanotubes (SWNTs) according to their electronic structure has attracted much recent attention. In many cases, metallic SWNTs are separated from semiconducting SWNTs and enriched in the supernatant due to stronger interaction between metallic SWNTs and adsorbates. However, the inverse separation of semiconducting from metallic SWNTs is often observed. In this computational study, the underlying mechanism is elucidated by density functional theory. We show that the shape of an aromatic molecule, the degree of hybridization between a molecule and a SWNT, and the oxidative state of SWNTs can affect the type of enriched SWNTs. In principle, one can control the type of enriched SWNTs by selecting a structurally compatible aromatic molecule or changing the hole concentration of the SWNTs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.