Abstract

Peer-to-Peer (P2P) lending is an online lending process allowing individuals to obtain or concede loans without the interference of traditional financial intermediaries. It has grown quickly the last years, with some platforms reaching billions of dollars of loans in principal in a short amount of time. Since each loan is associated with the probability of loss due to a borrower's failure, this paper addresses the borrower's default prediction problem in the P2P financial ecosystem. The main assumption, which makes this study different from the available literature, is that borrowers sharing the same homeownership status display similar risk profile, thus a model per segment should be developed. We estimate the Probability of Default (PD) of a borrower by using Logistic Regression (LR) coupled with Weight of Evidence encoding. The features set is identified via the Sequential Feature Selection (SFS). We compare the forward against the backward SFS, in terms of the Area Under the Curve (AUC), and we choose the one that maximizes this statistic. Finally, we compare the results of the chosen LR approach against two other popular Machine Learning (ML) techniques: the k Nearest Neighbors (k-NN) and the Random Forest (RF).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.