Abstract
Surface patterns affect wetting properties of solid materials allowing manipulation of the phase state of an adjacent fluid. The best known example of this effect is the superhydrophobic composite (Cassie-Baxter) interface with vapour/air pockets between the solid and liquid. Mathematically, the effect of surface micropatterns can be studied by an averaging technique similarly to the method of separation of motions in dynamics. However, averaged parameters are insufficient for robust superhydrophobic and superoleophobic surfaces because additional topography features are important: hierarchical organization and re-entrant roughness. The latter is crucial for the oleophobicity because it enhances the stability of a composite interface. The re-entrant topography can be achieved by various methods. Understanding the role of re-entrant surface topography gives us new insights on the multitude of wetting scenarios beyond the standard Wenzel and Cassie-Baxter models.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.