Abstract

Odontocete cetaceans have evolved a highly advanced system of active biosonar. It has been hypothesized that other groups of marine animals, such as the pinnipeds, possess analogous sound production, reception, and processing mechanisms that allow for underwater orientation using active echolocation. Despite sporadic investigation over the past 30 years, the accumulated evidence in favor of the pinniped echolocation hypothesis is unconvincing. We argue that an advanced echolocation system is unlikely to have evolved in pinnipeds primarily because of constraints imposed by the obligate amphibious functioning of the pinniped auditory system. As a result of these constraints, pinnipeds have not developed highly acute, aquatic, high frequency sound production or reception systems required for underwater echolocation. Instead, it appears that pinnipeds have evolved enhanced visual, tactile, and passive listening skills. The evolutionary refinement of alternative sensory systems allows pinnipeds to effectively forage, navigate, and avoid predators under water despite the lack of active biosonar capabilities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.