Abstract

For animals that lay eggs, a longstanding question is, why do females choose particular oviposition sites? For insects that lay eggs on plants there are three hypotheses: maximizing suitable habitat for juveniles, maximizing female lifespan, and maximizing egg survival. We investigated the function of the oviposition-site choice behavior of a gall midge, the Hessian fly, Mayetiola destructor (Say). In spite of living less than a day and having hundreds of eggs, the ovipositing female is choosy about the placement of eggs. Choosiness makes sense. The tiny gall-making neonate larva has limited movement and strict requirements for colonization. We examined whether offspring benefit from the Hessian fly female's preference for the plant's youngest leaf. To do this we restricted the female's access to the first, second, or third leaf of a seedling (wheat Triticum aestivum L.) plant. Being placed on older leaves did not impact egg survival or larval survival during migration to attack sites at the base of the plant, but did have negative impacts on egg-to-adult survival (reduced by 48%) and reproductive potential (reduced by 30-45%). These negative impacts appear to come from larvae having to search harder to find the limited number of reactive plant cells that can be reprogrammed to form the gall nutritive tissue. We propose that the ability of larvae to find these reactive cells in spite of being placed on an older leaf is important because it creates leeway for female behavior to evolve in the face of other selection pressures, e.g., attack by egg parasitoids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call