Abstract

In this paper, we discuss why functional renormalization is an essential tool to treat strongly disordered systems. More specifically, we treat elastic manifolds in a disordered environment. These are governed by a disorder distribution, which after a finite renormalization becomes non-analytic, thus overcoming the predictions of the seemingly exact dimensional reduction. We discuss how a renormalizable field theory can be constructed even beyond 2-loop order. We then consider an elastic manifold embedded inN dimensions, and give the exact solution forN →ɛ This is compared to predictions of the Gaussian replica variational ansatz, using replica symmetry breaking. Finally, the effective action at order 1/N is reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.