Abstract

Water is an extremely important liquid for chemistry and the search for more accurate force fields for liquid water continues unabated. Neglect of diatomic differential overlap (NDDO) molecular orbital methods provide and intriguing generalization of classical force fields in this regard because they can account both for bond breaking and electronic polarization of molecules. However, we show that most standard NDDO methods fail for water because they give an incorrect description of hydrogen bonding, water's key structural feature. Using force matching, we design a reparameterized NDDO model and find that it qualitatively reproduces the experimental radial distribution function of water, as well as various monomer, dimer, and bulk properties that PM6 does not. This suggests that the apparent limitations of NDDO models are primarily due to poor parameterization and not to the NDDO approximations themselves. Finally, we identify the physical parameters that most influence the condensed phase properties. These results help to elucidate the chemistry that a semiempirical molecular orbital picture of water must capture. We conclude that properly parameterized NDDO models could be useful for simulations that require electronically detailed explicit solvent, including the calculation of redox potentials and simulation of charge transfer and photochemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.