Abstract

The phosphate (Pi)-dependent uncoupling action of Cd2+ in oxidative phosphorylation in rat liver mitochondria was studied mainly in terms of Pi transport. Cd2+ at 2 microM caused full uncoupling in the presence of 10 mM Pi, but no uncoupling in the absence of Pi. Cd2+ released state 4 respiration after a certain lag-time, and then the respiration increased progressively with time. After its addition, Cd2+ was taken up by mitochondria in a similar period to the lag time before respiratory release. KIH-201, a potent and specific inhibitor of Pi transport via the Pi/H+ symporter, abolished the uncoupling completely. Cd2+ caused dissipation of the electric transmembrane potential (delta psi) and swelling of mitochondria in a Pi-dependent manner. Uncoupling by Cd2+ was found to take place in parallel with the uptake of Pi into mitochondria via the Pi/H+ symporter, suggesting that the uncoupling was due to acceleration of H+ influx through the Pi/H+ symporter activated by Cd2+.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.