Abstract

The temperature and depth dependence of the shear viscosity (η) of the quasi-liquid layer (QLL) of water on ice-Ih crystals was determined using simulations of the TIP4P/Ice model. The crystals display either the basal {0001} or prismatic {101̅0} facets, and we find that the QLL viscosity depends on the presented facet, the distance from the solid/liquid interface, and the undercooling temperature. Structural order parameters provide two distinct estimates of the QLL widths, which are found to range from 6.0 to 7.8 Å, and depend on the facet and undercooling temperature. Above 260 K, the viscosity of the vapor-adjacent water layer is significantly less viscous than the solid-adjacent layer and is also lower than the viscosity of liquid water.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.