Abstract

It is shown that the effect of substrate heating on the photo conversion efficiency in vacuum‐deposited small molecule organic solar cells is closely related to the improved free charge generation in ordered C60 regions. The formation of these ordered regions strongly depends on the deposition sequence in the device and differs therefore between inverted and noninverted cells. Substrate‐induced local fullerene ordering is found in small molecule:C60 bulk heterojunctions (BHJs) deposited on pristine C60 at elevated temperatures. This does not occur for BHJs deposited under identical conditions on pristine donor molecule layers, despite similar degrees of phase separation in both cases. These findings point to a hitherto unidentified advantage of inverted over noninverted solar cells that manifests itself in a higher charge separation efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.