Abstract
ABSTRACT Tidal heating is often used to interpret ‘radius anomaly’ of hot Jupiters (i.e. radii of a large fraction of hot Jupiters are in excess of 1.2 Jupiter radius which cannot be interpreted by the standard theory of planetary evolution). In this paper, we find that tidal heating induces another phenomenon ‘runaway inflation’ (i.e. planet inflation becomes unstable and out of control when tidal heating rate is above its critical value). With sufficiently strong tidal heating, luminosity initially increases with inflation, but across its peak it decreases with inflation such that heating is stronger than cooling and runaway inflation occurs. In this mechanism, the opacity near radiative-convective boundary (RCB) scales approximately as temperature to the fourth power and heat cannot efficiently radiate away from planet interior, which induces runaway inflation (similar to a tight lid on a boiling pot). Based on this mechanism, we find that radii of hot Jupiters cannot exceed 2.2RJ, which is in good agreement with the observations. We also give an upper limit for orbital eccentricity of hot Jupiters. Moreover, by comparison to the observations we infer that tidal heating locates near RCB.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.