Abstract

Abstract A cooling trend in summer (May–August) daytime temperatures since the mid-twentieth century over the central United States contrasts with strong warming of the western and eastern United States. Prior studies based on data through 1999 suggested that this so-called warming hole arose mainly from internal climate variability and thus would likely disappear. Yet it has prevailed for two more decades, despite accelerating global warming, compelling reexamination of causes that in addition to natural variability could include anthropogenic aerosol–induced cooling, hydrologic cycle intensification by greenhouse gas increases, and land use change impacts. Here we present evidence for the critical importance of hydrologic cycle change resulting from ocean–atmosphere drivers. Observational analysis reveals that the warming hole’s persistence is consistent with unusually high summertime rainfall over the region during the first decades of the twenty-first century. Comparative analysis of large ensembles from four different climate models demonstrates that rainfall trends since the mid-twentieth century as large as observed can arise (although with low probability) via internal atmospheric variability alone, which induce warming-hole-like patterns over the central United States. In addition, atmosphere-only model experiments reveal that observed sea surface temperature changes since the mid-twentieth century have also favored central U.S cool/wet conditions during the early twenty-first century. We argue that this latter effect is symptomatic of external radiative forcing influences, which, via constraints on ocean warming patterns, have likewise contributed to persistence of the U.S. warming hole in roughly equal proportion to contributions by internal variability. These results have important ramifications for attribution of extreme events and predicting risks of record-breaking heat waves in the region. Significance Statement Our paper makes a significant contribution to analysis of a cooling trend in summer (May–August) daytime temperatures since the mid-twentieth century over the central United States, contrasting with strong warming over the remainder of the United States and having important ramifications for assigning cause to and predicting record-breaking heat waves in the region. Observations and model simulations reveal the critical importance of hydrologic cycle change resulting from ocean–atmosphere impacts. Precipitation has increased substantially over the region as a result of atmospheric circulation trends consisting of generally lower pressure and cooler air advection into the region. The persistence of this pattern of increased rainfall/lower temperatures is likely due to near-equal contributions of external forcing (climate change) and internal climate variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call