Abstract

AbstractThe Inner Tibetan Plateau (ITP; also called the Qiangtang Plateau) appears to have experienced an overall wetting in summer (June, July, and August) since the mid-1990s, which has caused the rapid expansion of thousands of lakes. In this study, changes in atmospheric circulations associated with the wetting process are analyzed for 1979–2018. These analyses show that the wetting is associated with simultaneously weakened westerlies over the Tibetan Plateau (TP). The latter is further significantly correlated with the Atlantic multidecadal oscillation (AMO) on interdecadal time scales. The AMO has been in a positive phase (warm anomaly of the North Atlantic Ocean sea surface) since the mid-1990s, which has led to both a northward shift and weakening of the subtropical westerly jet stream at 200 hPa near the TP through a wave train of cyclonic and anticyclonic anomalies over Eurasia. These anomalies are characterized by an anomalous anticyclone to the east of the ITP and an anomalous cyclone to the west of the ITP. The former weakens the westerly winds, trapping water vapor over the ITP while the latter facilitates water vapor intruding from the Arabian Sea into the ITP. Accordingly, summer precipitation over the ITP has increased since the mid-1990s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.