Abstract

Plant roots help to reinforce the soil, increase slope stability and decrease water erosion. Root tensile strength plays an important role in soil reinforcement and slope stabilization. The relationship between tensile strength and internal chemical composition of roots is unknown due to limited studies. Thus, it is difficult to determine why root tensile strength tends to decrease with increasing root diameter. In this study, biomechanical and biochemical tests were performed on the roots of Chinese pine (Pinus tabulaeformis) to determine the relationships among tensile strength and the contents of the main chemical composition: cellulose, alpha-cellulose and lignin in the roots with different diameters. Our results confirmed that the tensile strength of Chinese pine roots decreased with increasing root diameter, and this relationship might be a power function. The chemical contents of the roots and root diameter were also related to each other with significant power regression. With increasing root diameter, the cellulose content and alpha-cellulose content increased, but the lignin content decreased. In addition, the lignin content exhibited a significantly positive relationship with tensile strength. Furthermore, the ratios of lignin/cellulose and lignin/alpha-cellulose decreased with increasing root diameter following significant power regressions, and they also demonstrated a positive relationship with tensile strength. Taken together, these results may be useful for studies on root tensile strength, soil reinforcement and slope stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.