Abstract

As first noted by Dixon et al. (J Am Chem Soc 108:2461–2462, 1986), heavily fluorinated pyramidal phosphorus compounds, e.g., F n PH(3−n) with n > 1, invert through a T-shaped transition state (edge inversion) rather than the D3h-like transition states (vertex inversion) found in the corresponding nitrogen compounds and less fluorinated phosphorus compounds. Subsequent studies by Dixon and coworkers established that this is a general phenomenon and has important chemical consequences. But what is the reason for the change in the structure of the transition state? Recent theoretical investigations have resulted in the discovery of a new type of chemical bond, the recoupled pair bond. In particular, it was found that recoupled pair bond dyads account for the hypervalency of the elements beyond the first row. In this paper, we show that recoupled pair bond dyads also account for the existence of the edge inversion pathway in heavily fluorinated phosphorus compounds and likely account for the presence of the lower energy inversion pathways in pyramidal compounds of other elements beyond the first row.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.