Abstract

Recently, the low frequency thermomagnetic effects on cancer cells have been analysed, both theoretically and experimentally. They have been explained by introducing an equilibrium thermodynamic approach. But, in this context, two related open problems have been highlighted: (1) Does there exist a magnetic interaction or do there exist any other processes? (2) Do there exist also thermal effects? Here, we introduce a non-equilibrium thermodynamic approach in order to address an answer to these questions. The results obtained point out that: (a) the effect produced by the electromagnetic wave is just a consequence of the interaction of the magnetic component of the electromagnetic wave with the biological matter; (b) the interaction of the electromagnetic wave causes also thermal effects, but related to heat transfer, even if there have been applied low frequency electromagnetic waves; (c) the presence of the magnetic field generates a symmetry breaking in the Onsager’s coefficients, with a related perturbation of the cancer stationary state.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call